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Motivation and Background Context

—A recent trend towards opening up software
products to 3"-party applications and services

—Developing Application Programming Interfaces
(APIs) has become an increasingly common practice

- Bosch, J. (2016). Speed, data, and ecosystems: the future of software engineering. IEEE

Software, 33(1), 82-88.

Introduction

The Real-World Problem

—APIs expose critical data and back-end services

towards their clients

—Concerns about critical non-functional requirements:

— the security of the back-end systems
— the confidentiality of the exchanged data

— the performance of the provided services

- Bosch, J. (2010). Architecture challenges for software ecosystems. In Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume (pp. 93-95).

- Scacchi, W., & Alspaugh, T. A. (2013). Processes in securing open architecture software systems.
In Proceedings of International Conference on Software and System Process.
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Research Question and Gap

Research Question:

— “How to address non-functional

requirements in APIs?”

Research Gap:

—There is still no framework to help software

developers with the above question.

Thesis Overview

Thesis Objective and Approach

Objective:

—Devising a framework that can reliably
aids software developers in addressing

non-functional requirements in APIs

Approach:

—Reusing API Design Knowledge

Research Step 1:

Collecting and Organizing
API Design Knowledge
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Objectives and Method

—Collecting and organizing the API design

knowledge from various dispersed resources:
— Expert Opinion: Books, vendor white papers, weblogs
— Available standards and design frameworks

— Peer-reviewed Literature

— A systematic and evidence-based review of the
literature

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele
University, 33(2004), 1-26.

Dyba, T., Kitchenh B.A, &
practitioners. IEEE software, 22(1), 58-65. 9

M. (2005). Evidence-based software engineering for

API Non-Functional Requirements
— An Example

— Security of an API is the degree to which an APl is free from
external threats and attacks, internal errors and failures, and

unintended access.

API Security

API API APl .
Confidentiality Privacy Reliability
API API API API API
Message Access Robustness  Traceability Integrity

Ce i Confi

Siriwardena, P. (2014). Advanced API Security: Securing APIs with OAuth 2.0, OpenID Connect, JWS,
and JWE. Apress, Berkeley, CA.

De, B. (2017). APl Management: An Architect's Guide to Developing and Managing APIs for Your
Organization. Apress, Berkeley, CA, First edition March 2017. 11

Outcomes and Contributions

— A structured body of API design
knowledge:
1. API non-functional requirements
2. API design techniques

3. The trade-offs of the APl design

techniques

API Design Techniques — An Example

— API access authorization mechanisms are responsible for
permitting a client to access an API.

Access Authorization

of API
APl-Key ~ Username and M“tf‘al . Open OpenID
Password  Authentication Authorization Connect
X.509 Version 2.0 Version 1.0

RFC 4158: Internet X.509, Public Key Infrastructure: Certification Path Building, Available at
https://tools.ietf.org/html/rfc4158, Retrieved on 21 / 07/ 2018

RFC 6749 - The OAuth 2.0 Authorization Framework, Available at https://tools.ietf.org/html/rfc6749
Retrieved on 17 / 06 / 2018

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., & Mortimore, C. (2014). OpenlID Connect Core
1.0 incorporating errata set 1. The OpenlD Foundation, specification.

10

12
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API Design Trade-Offs — An Example
— API-Key trade-offs:
— API Usability - Usage Simplicity: (+) (Strong). An API can be

simply used by presenting a key to the API. There are low
security barriers in order to use an API.

— Support for the evaluation: Qualitative reasoning and expert opinion
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De, B. (2017). APl Management: An Architect's Guide to Developing and Managing APIs 13
for Your Organization. Apress, Berkeley, CA, First edition March 2017.

Objectives and Method

—Objective: Encoding the API Design Knowledge

—Method: Describing the knowledge in the Non-
Functional Requirements (NFR) multi-valued

logic

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2000). Non-functional requirements in software

engineering (Vol. 5). Springer Science & Business Media.

15

Research Step 2:

Formalizing and Encoding the

Collected API Design Knowledge

14

Outcomes

156 API Design Catalogues:

Rule Type

(Gyeorr G,)

n

G,, : Rule Category

- G;is a term in the form of Type [Topic]

- Rule Type € {Break, SomeMinus, Hurt, Unknown, Help,

SomePlus, Make}

- Rule Category € {NF-REF, NF-OP, F-REF, F-OP, COR}

16
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API Design Catalogues — Example

API Design Catalogues — Example

API Security
-
AP API
APl APl H
L #0Operational ® Reliability
Confidentiality Privacy Security
. . . . .
API API AP APl AP
Message Access Robustness  Traceability  Integrity
Confidentiality ~ Confidentiality
Security
(4P
i
Confidentiali Privacy  Operati Reliability
[apn [API]  Security [API] [apn
.............................. BT T L L L L L LL T T LT TP PP P PP PP PP PP PEP PP
Confidentiality : Operational : Reliability
(AP H Security [API] H AP
and H H
: and H
H H Help
Message Access H H )
Confidentiality Confidentiality & Robustness  Traceability H Integrity 17
[apn [API) H [apn [apn H 2]

API Design Catalogues

1- (Access Simplicity [API], Access Duration [API], Access Rate
d
[API])) —_, Accessibility [API] : NF-REF

2- (Compatibility with Minor Changes [API], Compatibility with Major
d
Changes [API]) —— Evolvability [API] : NF-REF

155- (Client-Side Two-Phase Transaction Management [ ])
Break—

— > Latency [API] : COR

156 - (Client-Side Two-Phase Transaction Management [ ])
Bre

k——
e, Throughput [API] : COR
19

Security
[APN
n
Confidentiality Privacy Operational Reliability
[API] [API] Security [API] [API]

(Confidentiality [API], Privacy [API], Operational Security

d
[API], Reliability [API]) —— Security [API] : NF-REF

18
Research Step 3:
Using the Encoded API
Design Knowledge

20
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Objectives and Method

—Developing a method to systematically use

the encoded API design knowledge:

1. A step-wise refinement procedure
2. An evaluation procedure

— Using the NFR forward evaluation procedure
3. Aselection procedure

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2000). Non-functional requirements in software

engineering (Vol. 5). Springer Science & Business Media. 21

Component 1:
Refinement Procedure - 1

“Design a mechanism to secure access to the Account APL.”

2020-12-23

Outcomes and Contributions

—A semi-formal methodology for designing

requirements into APIs

Input: Output:

I‘Design a mechanism to secure access to the Account API.

Either
- Username and Password,

- Confidentiality of the Account APl is Very Critical.
or

- Privacy of the Account APl is Very Critical. - Open Authorization version 2.0

- Latency of the Account APl is Critical.”

1- Security [API] Security

[API]

Confidentiality Privacy Operational Reliability
[API] [API] Security [API] [API]

and
2- Security [APIl] «————

(Confidentiality [API], Privacy [API],
Operational Security [API], Reliability [API])

23

22

Component 1:
Step-Wise Refinement Procedure - 2

1- Security [API]
and
2- Security [API] ¢——

(Confidentiality [API], Privacy [API], Operational
Security [API], Reliability [API])

xor
10- Access Authorization [API] «———

(API-Key [ ], Username and Password [ ], Mutual
Certificate-Based Authentication X.509 [ ], Open

Authorization Version 2.0 [ ], Open-ID Connect

Version 1.0 [])




Component 2 : Evaluation Procedure

[API] [API]
X v

[API]

Message A i
I ge v ccess Privacy
Confidentiality % JConfidentiality 5 [API]
[API] [API]

Security Performance

Make

| Latency
[API]

Break(-) Help[+)/{k(- Make (++)

¥_Access Authorization [API]

Username Mutual Certificate -~ Open Open ID
and Based Authorization Connect
Password Authentication- Version 2.0 [] Version 1.0
X.509[] [1

Research Step 4:

25

Tool Support for Using

the Encoded API Design Knowledge

27

Component 3 : Selection Procedure

- Privacy of the Account APl is Very Critical.

- Latency of the Account APl is Critical.”

‘Design a mechanism to secure access to the Account API.

- Confidentiality of the Account APl is Very Critical.

Requirement Confidentiality | Privacy | Latency
[API] [API] [API] Score

Requirements Specification . ) ) )

Priority High High Medium

Expected Satisfaction Value Sat Sat Sat 20

API-Key Den Den Sat -12
. N o Username and Password PSat PSat PDen 6
in the Access Authorization

Mutual Authentication Sat Den PDen -2
Design Mechanisms

OAuth 2.0 PSat PSat PDen 6
Available in the Catalogues OpenlD connect PSat PSat Den 4

Objectives and Method

—Developing a tool that supports the use

of the API catalogues

—Designed and implemented a rule-

based knowledge-based system in Java

28
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Method — Development of the Tool Outcomes
Design Step —— —RAPID an Interactive design assistant
Step Step Form Rule English Translation Source Code: https:/github.com/m-h-s/RAPID
Category
“Elaborate on the requirement G;. O voach = 3 | | e

Gi<H—mGj NF-REF | The requirement G; can be refined

Requirement into the requirement G;.”
Refinement “Elaborate on the requirement G;.
GﬁLd(Gj, .",Gn) NF-REF The requirement G; can be refined

into the following requirements:
Gj, and ..., and Gn'”

Research Step 5:

Evaluating the

developed Framework




Objectives and Method

Research Question:

—“How valid and reliable are the design

guidelines of the framework?”

Method:

a) Seatingthe tool in an APl design exam

b) Asking 7 experienced developers to blindly evaluate

the accuracy of the provided answers

33

How valid are the design guidelines?

Evaluator Evaluator Evaluator Evaluator Evaluator Evaluator Evaluator
1 2 3 4 5 6 7

© ., 533 500 467 433 767 733 96.7

@ (%) 36.7 30.0 53.3 40.0 133 26.7 33

X=629% 0=19.76 %

# Acceptable Answers (= 22)

= 0
# Answers (= 30) =73.3%

Accuracy =

2020-12-23

Measuring the Validity of
the Design Guidelines

Accuracy Measure:

# Acceptable Answers
# Answers (= 30)

— An acceptable answer:

— is accepted by the majority of the evaluators

— # Evaluators = 7 = Majority : n >3
34

Objectives and Method (2)

Research Question:

“Why some answers have been considered
as unacceptable by some of the evaluators?”
Method:
— Open Coding:
Categorizing the comments of the evaluators

- Flick, U. (2009). An introduction to qualitative research. Sage Publications Limited.
36



Why are some answers unacceptable?

Relation between

Answer is Answer is valid but
misunderstood. incomplete.

34%

is
misunderstoog Answer is

inappropriate.

22%

37

Summary — Motivation and Objectives

Problem:
— Addressing non-functional requirements in APIs

is crucial considering the trade-offs to be made

Objective:

—Devising a framework that assists software

engineers with addressing these requirements
39

Summary and Conclusions

Summary - Method

1. Collecting and organizing API design knowledge
2. Formalizing API design knowledge
3. Using the encoded API design knowledge

4. Developing a tool that supports the use of the

encoded design knowledge

5. Evaluating the reliability of the provided design

assistance

40
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Summary — Research Questions (1)

—RQ 1. What non-functional requirements should be

considered in designing APIs?

—RQ 2. What techniques are suggested to address

these requirements in APIs?
—RQ 3. What are the trade-offs of these techniques?

—RQA4. How to represent and formalize design

knowledge?

41

Conclusions — Thesis Statement

It is possible to devise an assistant
that can reliably assist software
developers with addressing

non-functional requirements in APIs.

2020-12-23

Summary — Research Questions (2)

—RQ 5. How to design a tool that can process design

knowledge?

— RQ6. How to evaluate a framework that assists with

the task of software deign?

42

Future Work

— Evaluating the usefulness
and effectiveness of RAPID
in assisting software

developers with API design

44
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