Assisting with API Design

through Reusing Design Knowledge

Mahsa Sadi

Department of Computer Science

University of Toronto

October 31th, 2019

Motivation and Background Context

—A recent trend towards opening up software
products to 3"-party applications and services

—Developing Application Programming Interfaces
(APIs) has become an increasingly common practice

- Bosch, J. (2016). Speed, data, and ecosystems: the future of software engineering. IEEE

Software, 33(1), 82-88.

Introduction

The Real-World Problem

—APIs expose critical data and back-end services

towards their clients

—Concerns about critical non-functional requirements:

— the security of the back-end systems
— the confidentiality of the exchanged data

— the performance of the provided services

- Bosch, J. (2010). Architecture challenges for software ecosystems. In Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume (pp. 93-95).

- Scacchi, W., & Alspaugh, T. A. (2013). Processes in securing open architecture software systems.
In Proceedings of International Conference on Software and System Process.

2020-12-23

Research Question and Gap

Research Question:

— “How to address non-functional

requirements in APIs?”

Research Gap:

—There is still no framework to help software

developers with the above question.

Thesis Overview

Thesis Objective and Approach

Objective:

—Devising a framework that can reliably
aids software developers in addressing

non-functional requirements in APIs

Approach:

—Reusing API Design Knowledge

Research Step 1:

Collecting and Organizing
API Design Knowledge

2020-12-23

Objectives and Method

—Collecting and organizing the API design

knowledge from various dispersed resources:
— Expert Opinion: Books, vendor white papers, weblogs
— Available standards and design frameworks

— Peer-reviewed Literature

— A systematic and evidence-based review of the
literature

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele
University, 33(2004), 1-26.

Dyba, T., Kitchenh B.A, &
practitioners. IEEE software, 22(1), 58-65. 9

M. (2005). Evidence-based software engineering for

API Non-Functional Requirements
— An Example

— Security of an API is the degree to which an APl is free from
external threats and attacks, internal errors and failures, and

unintended access.

API Security

API API APl .
Confidentiality Privacy Reliability
API API API API API
Message Access Robustness Traceability Integrity

Ce i Confi

Siriwardena, P. (2014). Advanced API Security: Securing APIs with OAuth 2.0, OpenID Connect, JWS,
and JWE. Apress, Berkeley, CA.

De, B. (2017). APl Management: An Architect's Guide to Developing and Managing APIs for Your
Organization. Apress, Berkeley, CA, First edition March 2017. 11

Outcomes and Contributions

— A structured body of API design
knowledge:
1. API non-functional requirements
2. API design techniques

3. The trade-offs of the APl design

techniques

API Design Techniques — An Example

— API access authorization mechanisms are responsible for
permitting a client to access an API.

Access Authorization

of API
APl-Key ~ Username and M“tf‘al . Open OpenID
Password Authentication Authorization Connect
X.509 Version 2.0 Version 1.0

RFC 4158: Internet X.509, Public Key Infrastructure: Certification Path Building, Available at
https://tools.ietf.org/html/rfc4158, Retrieved on 21 / 07/ 2018

RFC 6749 - The OAuth 2.0 Authorization Framework, Available at https://tools.ietf.org/html/rfc6749
Retrieved on 17 / 06 / 2018

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., & Mortimore, C. (2014). OpenlID Connect Core
1.0 incorporating errata set 1. The OpenlD Foundation, specification.

10

12

2020-12-23

API Design Trade-Offs — An Example
— API-Key trade-offs:
— API Usability - Usage Simplicity: (+) (Strong). An API can be

simply used by presenting a key to the API. There are low
security barriers in order to use an API.

— Support for the evaluation: Qualitative reasoning and expert opinion

2 2
s s
= I R 5| s
2 2 o 2 9 =} g o Fy
Qo o o o S o = 0 =]
g E o £ = o € o < >
o £ n = © o 9 Q o =
< O S n 4 < O = O o
API-Key + Strong +Strong |+ Strong | +Weak - Strong | - Strong

De, B. (2017). APl Management: An Architect's Guide to Developing and Managing APIs 13
for Your Organization. Apress, Berkeley, CA, First edition March 2017.

Objectives and Method

—Objective: Encoding the API Design Knowledge

—Method: Describing the knowledge in the Non-
Functional Requirements (NFR) multi-valued

logic

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2000). Non-functional requirements in software

engineering (Vol. 5). Springer Science & Business Media.

15

Research Step 2:

Formalizing and Encoding the

Collected API Design Knowledge

14

Outcomes

156 API Design Catalogues:

Rule Type

(Gyeorr G,)

n

G,, : Rule Category

- G;is a term in the form of Type [Topic]

- Rule Type € {Break, SomeMinus, Hurt, Unknown, Help,

SomePlus, Make}

- Rule Category € {NF-REF, NF-OP, F-REF, F-OP, COR}

16

2020-12-23

API Design Catalogues — Example

API Design Catalogues — Example

API Security
-
AP API
APl APl H
L #0Operational ® Reliability
Confidentiality Privacy Security
.
API API AP APl AP
Message Access Robustness Traceability Integrity
Confidentiality ~ Confidentiality
Security
(4P
i
Confidentiali Privacy Operati Reliability
[apn [API] Security [API] [apn
.............................. BT T L L L L L LL T T LT TP PP P PP PP PP PP PEP PP
Confidentiality : Operational : Reliability
(AP H Security [API] H AP
and H H
: and H
H H Help
Message Access H H)
Confidentiality Confidentiality & Robustness Traceability H Integrity 17
[apn [API) H [apn [apn H 2]

API Design Catalogues

1- (Access Simplicity [API], Access Duration [API], Access Rate
d
[API])) —_, Accessibility [API] : NF-REF

2- (Compatibility with Minor Changes [API], Compatibility with Major
d
Changes [API]) —— Evolvability [API] : NF-REF

155- (Client-Side Two-Phase Transaction Management [])
Break—

— > Latency [API] : COR

156 - (Client-Side Two-Phase Transaction Management [])
Bre

k——
e, Throughput [API] : COR
19

Security
[APN
n
Confidentiality Privacy Operational Reliability
[API] [API] Security [API] [API]

(Confidentiality [API], Privacy [API], Operational Security

d
[API], Reliability [API]) —— Security [API] : NF-REF

18
Research Step 3:
Using the Encoded API
Design Knowledge

20

2020-12-23

Objectives and Method

—Developing a method to systematically use

the encoded API design knowledge:

1. A step-wise refinement procedure
2. An evaluation procedure

— Using the NFR forward evaluation procedure
3. Aselection procedure

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2000). Non-functional requirements in software

engineering (Vol. 5). Springer Science & Business Media. 21

Component 1:
Refinement Procedure - 1

“Design a mechanism to secure access to the Account APL.”

2020-12-23

Outcomes and Contributions

—A semi-formal methodology for designing

requirements into APIs

Input: Output:

I‘Design a mechanism to secure access to the Account API.

Either
- Username and Password,

- Confidentiality of the Account APl is Very Critical.
or

- Privacy of the Account APl is Very Critical. - Open Authorization version 2.0

- Latency of the Account APl is Critical.”

1- Security [API] Security

[API]

Confidentiality Privacy Operational Reliability
[API] [API] Security [API] [API]

and
2- Security [APIl] «————

(Confidentiality [API], Privacy [API],
Operational Security [API], Reliability [API])

23

22

Component 1:
Step-Wise Refinement Procedure - 2

1- Security [API]
and
2- Security [API] ¢——

(Confidentiality [API], Privacy [API], Operational
Security [API], Reliability [API])

xor
10- Access Authorization [API] «———

(API-Key [], Username and Password [], Mutual
Certificate-Based Authentication X.509 [], Open

Authorization Version 2.0 [], Open-ID Connect

Version 1.0 [])

Component 2 : Evaluation Procedure

[API] [API]
X v

[API]

Message A i
I ge v ccess Privacy
Confidentiality % JConfidentiality 5 [API]
[API] [API]

Security Performance

Make

| Latency
[API]

Break(-) Help[+)/{k(- Make (++)

¥_Access Authorization [API]

Username Mutual Certificate -~ Open Open ID
and Based Authorization Connect
Password Authentication- Version 2.0 [] Version 1.0
X.509[] [1

Research Step 4:

25

Tool Support for Using

the Encoded API Design Knowledge

27

Component 3 : Selection Procedure

- Privacy of the Account APl is Very Critical.

- Latency of the Account APl is Critical.”

‘Design a mechanism to secure access to the Account API.

- Confidentiality of the Account APl is Very Critical.

Requirement Confidentiality | Privacy | Latency
[API] [API] [API] Score

Requirements Specification .)))

Priority High High Medium

Expected Satisfaction Value Sat Sat Sat 20

API-Key Den Den Sat -12
. N o Username and Password PSat PSat PDen 6
in the Access Authorization

Mutual Authentication Sat Den PDen -2
Design Mechanisms

OAuth 2.0 PSat PSat PDen 6
Available in the Catalogues OpenlD connect PSat PSat Den 4

Objectives and Method

—Developing a tool that supports the use

of the API catalogues

—Designed and implemented a rule-

based knowledge-based system in Java

28

2020-12-23

2020-12-23

Method — Development of the Tool Outcomes
Design Step —— —RAPID an Interactive design assistant
Step Step Form Rule English Translation Source Code: https:/github.com/m-h-s/RAPID
Category
“Elaborate on the requirement G;. O voach = 3 | | e

Gi<H—mGj NF-REF | The requirement G; can be refined

Requirement into the requirement G;.”
Refinement “Elaborate on the requirement G;.
GﬁLd(Gj, .",Gn) NF-REF The requirement G; can be refined

into the following requirements:
Gj, and ..., and Gn'”

Research Step 5:

Evaluating the

developed Framework

Objectives and Method

Research Question:

—“How valid and reliable are the design

guidelines of the framework?”

Method:

a) Seatingthe tool in an APl design exam

b) Asking 7 experienced developers to blindly evaluate

the accuracy of the provided answers

33

How valid are the design guidelines?

Evaluator Evaluator Evaluator Evaluator Evaluator Evaluator Evaluator
1 2 3 4 5 6 7

© ., 533 500 467 433 767 733 96.7

@ (%) 36.7 30.0 53.3 40.0 133 26.7 33

X=629% 0=19.76 %

Acceptable Answers (= 22)

= 0
Answers (= 30) =73.3%

Accuracy =

2020-12-23

Measuring the Validity of
the Design Guidelines

Accuracy Measure:

Acceptable Answers
Answers (= 30)

— An acceptable answer:

— is accepted by the majority of the evaluators

— # Evaluators = 7 = Majority : n >3
34

Objectives and Method (2)

Research Question:

“Why some answers have been considered
as unacceptable by some of the evaluators?”
Method:
— Open Coding:
Categorizing the comments of the evaluators

- Flick, U. (2009). An introduction to qualitative research. Sage Publications Limited.
36

Why are some answers unacceptable?

Relation between

Answer is Answer is valid but
misunderstood. incomplete.

34%

is
misunderstoog Answer is

inappropriate.

22%

37

Summary — Motivation and Objectives

Problem:
— Addressing non-functional requirements in APIs

is crucial considering the trade-offs to be made

Objective:

—Devising a framework that assists software

engineers with addressing these requirements
39

Summary and Conclusions

Summary - Method

1. Collecting and organizing API design knowledge
2. Formalizing API design knowledge
3. Using the encoded API design knowledge

4. Developing a tool that supports the use of the

encoded design knowledge

5. Evaluating the reliability of the provided design

assistance

40

2020-12-23

10

Summary — Research Questions (1)

—RQ 1. What non-functional requirements should be

considered in designing APIs?

—RQ 2. What techniques are suggested to address

these requirements in APIs?
—RQ 3. What are the trade-offs of these techniques?

—RQA4. How to represent and formalize design

knowledge?

41

Conclusions — Thesis Statement

It is possible to devise an assistant
that can reliably assist software
developers with addressing

non-functional requirements in APIs.

2020-12-23

Summary — Research Questions (2)

—RQ 5. How to design a tool that can process design

knowledge?

— RQ6. How to evaluate a framework that assists with

the task of software deign?

42

Future Work

— Evaluating the usefulness
and effectiveness of RAPID
in assisting software

developers with API design

44

11

2020-12-23

E-mail: mhsadi@cs.toronto.edu

45

12

